
Determine Thermal Boundaries for Optimal Performance Level
Source:R/therm_suit_bounds.R
therm_suit_bounds.Rd
Calculate thermal boundaries that define the suitable region of a Thermal Performance Curve (TPC) corresponding to a user-defined optimal performance level.
Source
The dataset used in the example was originally published in Satar & Yokomi (2022) under the CC-BY-NC license
Arguments
- preds_tbl
a
tibble
object as produced bypredict_curves()
.- model_name
character. Name of one or several of the TPC models fitted first in
fit_devmodels()
and predicted next inpredict_curves()
. If usingmodel_name = "all"
all models contained inpreds_tbl
will be used.- suitability_threshold
A numeric value from 50 to 100 representing the quantile of the curve that provides the user-defined optimal performance. For instance, setting
suitability_threshold
to 80 identifies the top 20% (or quantile 80) of the maximum values of the development rate predicted by the chosen TPC model. Ifsuitability_threshold
equals 100, the function returns the optimum temperature for development rate.
Value
A tibble with six columns:
model_name
: A string indicating the selected TPC model used for projections.suitability
: A string indicating the suitability threshold in percentage (seesuitability_threshold
).tval_left
: A number representing the lower thermal boundary delimiting the suitable region of the TPC.tval_right
: A number representing the upper thermal boundary delimiting the suitable region of the TPC.pred_suit
: A number corresponding to the predicted development rate value determining the chosen quantile threshold of the maximum rate (i.e., suitability percentage of maximum rate).iter
: A string determining the TPC identity from the bootstrapping procedure inpredict_curves()
function, orestimate
when it represents the estimated TPC fitted infit_devmodels()
.
References
Angilletta, M.J., (2006). Estimating and comparing thermal performance curves. J. Therm. Biol. 31: 541-545. (for model selection in TPC framework)
Padfield, D., O'Sullivan, H. and Pawar, S. (2021). rTPC and nls.multstart:
A new pipeline to fit thermal performance curves in R
. Methods Ecol Evol. 12: 1138-1143.
Rebaudo, F., Struelens, Q. and Dangles, O. (2018). Modelling temperature-dependent
development rate and phenology in arthropods: The devRate
package for R
.
Methods Ecol Evol. 9: 1144-1150.
Satar, S. and Yokomi, R. (2002). Effect of temperature and host on development of Brachycaudus schwartzi (Homoptera: Aphididae). Ann. Entomol. Soc. Am. 95: 597-602.
See also
browseVignettes("rTPC")
for model names, start values searching workflows, and
bootstrapping procedures using both rTPC::get_start_vals()
and nls.multstart::nls_multstart()
fit_devmodels()
for fitting Thermal Performance Curves to development rate data,
which is in turn based on nls.multstart::nls_multstart()
.
predict_curves()
for bootstrapping procedure based on the above-mentioned rTPC
vignettes.
Examples
if (FALSE) { # interactive()
data("aphid")
fitted_tpcs <- fit_devmodels(temp = aphid$temperature,
dev_rate = aphid$rate_value,
model_name = "all")
plot_devmodels(temp = aphid$temperature,
dev_rate = aphid$rate_value,
fitted_parameters = fitted_tpcs,
species = "Brachycaudus schwartzi",
life_stage = "Nymphs")
# Obtain prediction TPCs with bootstraps for propagating uncertainty:
boot_tpcs <- predict_curves(temp = aphid$temperature,
dev_rate = aphid$rate_value,
fitted_parameters = fitted_tpcs,
model_name_2boot = c("lactin2", "briere2", "beta"),
propagate_uncertainty = TRUE,
n_boots_samples = 10)
print(boot_tpcs)
# Plot bootstrapped curves:
plot_uncertainties(temp = aphid$temperature,
dev_rate = aphid$rate_value,
bootstrap_tpcs = boot_tpcs,
species = "Brachycaudus schwartzi",
life_stage = "Nymphs")
# Calculate Q80 thermal bounds
boundaries <- therm_suit_bounds(preds_tbl = boot_tpcs,
model_name = "lactin2",
suitability_threshold = 80)
head(boundaries)
}